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Abstract: Grassland ecosystems cover a high percentage of the terrestrial habitats of Earth and
support the livelihood and well-being of at least one-fifth of the human population. Climate change
and human activities are causing increasing pressure on arid and semi-arid regions. Land use/cover
change significantly affects the function and distribution of grasslands, showing diverse patterns
across space and time. The study investigated the spatial distribution of grasslands of Mount
Zireia (Peloponnesus, Greece) using MaxEnt modeling based on CMIP6 models (CNRM-CM6 and
CCMCC-ESM2) and two Shared Socioeconomic Pathways (SSP 245 and SSP 585) covering the period
of 1970–2100. The results from the current (1970–2000) and several future periods (2020–2100)
revealed that the MaxEnt model provided highly accurate forecasts. The grassland distribution was
found to be significantly impacted by climate change, with impacts varying by period, scenario,
and climate model used. In particular, the CNRM-CM6-1 model forecasts a substantial increase
in grasslands at higher elevations up to 2100 m asl. The research emphasizes the importance of
exploring the combined impacts of climate change and grazing intensity on land use and cover
changes in mountainous grasslands.

Keywords: MaxEnt model; Shared Socioeconomic Pathways; land use/cover change; climate change

1. Introduction

Land use/cover change (LUCC) and climate change are the two main categories of
environmental changes at both a regional and a global scale [1]. LUCC is described as
changing patterns in a specific area over time and space due to different variables, endan-
gering both biological diversity and ecological systems [2–5]. Intense human activities and
land abandonment result in LUCC which in turns reduces biodiversity, leads to habitat loss
and degradation, and causes landscape isolation, fragmentation, or homogenization [6–8].
In addition, the provision and values of certain ecological services have been modified as
a result of LUCC [9,10]. A significant quantity of data are needed to study LUCC and to
develop strategies for the sustainable management of natural resources [5,11].

The climate is one of the most important environmental factors affecting LUCC [12–15].
There is no doubt that the climate at the global scale is getting warmer, and many of the
changes observed since the 1950s have not been seen for decades or centuries [16], often
resulting in extreme weather phenomena and climate patterns, leading to the extinction
of species and significant modifications to their habitats and niches [17,18]. Forecasts
suggest that by 2100, about 51% of the current flora species will lose half of their geographic
distribution [19,20]. Through land use modeling, conservation activities can be efficiently
targeted to anticipate the impact of climate change on LUCC [21].
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Integrating spatial and temporal models into projections of LUCC is essential for
understanding historical patterns and present conditions and making informed decisions
for future scenarios [22]. The state-of-the-art machine learning model MaxEnt [23] is
regularly used in distribution modeling [24–26]. MaxEnt has been extensively utilized
in forecasting the potential geographic range of species and their nonlinear connections
between environmental factors and documented sites [27–30]. It has been increasingly
used in predicting forest fires [31,32], cultural ecosystem services [1,33], and the impact
of human pressures on land use [27,34]. However, its utilization in predicting land uses
still needs to be improved [35]. This method is useful for forecasting the full potential
geographic distribution of a species (the fundamental environmental niche), but not its
actual distribution, which might be limited due to competition, barriers, or human-induced
modification of the environment. This approach is also used to determine the relative
importance of various environmental variables for species distribution and the relative
suitability of different areas as potential habitats [23,36]. Classifications of land cover are
studied in the same way as species or habitats [37].

Grassland ecosystems cover about 20–26% of the Earth’s land area [38] and support
the livelihood and general well-being of one-fifth of the human population [39,40]. These
ecosystems provide grazing areas for livestock [38,41], habitats for wildlife [39], and con-
tribute to the provision of ecosystem services, such as environmental protection, water
storage, carbon sequestration, and in situ conservation of plant genetic resources [42–44].
Despite their crucial role and the significant ecosystem services they provide, the impor-
tance of grasslands is often overlooked [45,46].

Climate and human activities are both key factors in the development and longevity
of grasslands [44]. Grazing is acknowledged as a crucial element in protecting grassland
habitats, enhancing biodiversity and ecosystem function. Nonetheless, grasslands are still
at great risk from multiple sources, such as climate change, land use, soil degradation,
nutrient loss, fires, habitat fragmentation, and human activities [44,47–49]. Precipitation
and grazing play significant roles in determining species diversity and overall ecosystem
functioning in grassland ecosystems and especially overgrazing can lead to severe habitat
loss and degradation [38,50,51], which is estimated from 10–20% to 70–80% [52]. Moreover,
they have been exposed to increased hazards due to extensive use and deterioration [53–55].
Elevation also has a major impact on climatic conditions and land formation, which then
affects the availability of resources, plant growth regulators, and species diversity [56,57].
The above dynamics have a severe effect also in the Mediterranean basin, where 10–20%
of the total area is covered by grasslands distributed across various elevation zones, each
playing a unique ecological role, supporting important ecosystem services, and facing
distinct environmental challenges [58].

In Greece, the highest percentage of grasslands is located in the middle and high
(mountainous) elevation zones (32 and 51%, respectively) [59]. Mountainous grasslands
offer excellent grazing areas for transhumant livestock and play a vital role in preserving
biodiversity and landscapes, as well as in mitigating climate change and regulating water
resources [60,61]. Transhumance is a type of pastoralism where animals are moved periodi-
cally between different elevation zones to take advantage of seasonally available grazing
resources [61]. Nonetheless, these ecosystems are particularly vulnerable to the impacts
of climate change, including altered rainfall patterns and rising temperatures [62] and the
cumulative risk of desertification. The importance of integrated management strategies
to maintain the ecological integrity of grasslands is amplified by the complex interactions
between land use (human activities) and climate over space and time [63] in the face of
ongoing environmental change. To the best of our knowledge, the Maxent model has not
been applied to study the impact of climate change on land use, particularly grasslands, in
the Mediterranean region.

The aim of the current study was to evaluate the effects of climate change on the
structure and distribution of the grasslands in a Mediterranean mountain. We selected a
typical Mediterranean mountain, Mt Zireia, lying on the northeast part of the Peloponnese,
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Greece, and we tested two different climate models and scenarios by utilizing the MaxEnt
modeling approach. From the Shared Socioeconomic Pathways (SSPs), we tested two
scenarios: the SSP245 as intermediate and SSP585 as pessimistic, and we projected forecasts
up to 2100.

2. Materials and Methods
2.1. Study Area

The study area is Mount Zireia with an altitudinal range of 310 to 2374 m a.s.l. It is
located in the prefecture of Korinthos, 115 km west of Athens, and includes approximately
39,761.57 ha (Figure 1). The Natura2000 network comprises more than two thirds of the
study area (Natura 2000). The lakes Stymfalia (15.285 ha) to the south and Doxa (48 ha)
to the west are the primary hydrological basins in the region (Figure 1) that highly affect
microclimatic conditions. The climate is categorized as Mediterranean, featuring mild
winters and arid, extremely hot summers, in line with Emberger’s bioclimatogram and
classified as Csa in the Köppen–Geiger system (http://www.en.climate-data.org, accessed
on 23 May 2022). Over the last 60 years, the mean annual temperature has fluctuated from
12.59 to 15.55 ◦C, and the mean annual precipitation varied from 418.62 mm to 1056 mm [64].
Agriculture and livestock production are the primary economic activities in the region [60].
The traditional transhumant livestock system has been present in the study area for many
years but has experienced a significant decline in recent decades.
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Figure 1. Geographical location of the study area.

2.2. Current Land Use/Land Cover Data

The land use/cover classification process was carried out mainly by using visual
photo-interpretation techniques and digital processes in satellite images from Google Earth
Pro v.7.3 software for 2017, 2019 and 2020 (georeferenced to the Hellenic Geodetic Refer-
ence System 1987-HGRS87), according to a procedure used in the study by Chouvardas
et al. [8]. The above analysis was processed using ArcGIS 10.8, resulting in the creation
of a digital LULC map for 2020. Among the various land use categories identified—such
as agricultural areas, grasslands, open shrublands, dense shrublands, silvopastoral areas,
forests, barren areas, urban areas, and lakes—this study focused specifically on the geo-
graphical distribution of grasslands. These grasslands, classified as discontinuous, covered
an estimated area of 5893.51 hectares, representing 14.8% of the total study area.

Initially, a grid of 1000 m cell size was created (fishnet) in the shapefile format using
ArcGIS 10.8. A total of 234 grassland distribution points were collected as dependent vari-
ables in the MaxEnt model. The samples’ longitude and latitude coordinates were recorded
in the Excel database and converted to CSV format for developing the MaxEnt model.

2.3. Environmental Variables for Model Fitting

Three topographic (elevation, slope, and aspect) and nineteen bioclimatic variables
(bio1–bio19), reflecting seasonal changes in temperature and precipitation, with 30 s (ca.

http://www.en.climate-data.org
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1 km) spatial resolution were selected (Table 1) for developing an ecological niche model.
The elevation in Digital Elevation Map (DEM) format was downloaded from the Jet Propul-
sion Laboratory of NASA (Aster GDEM v3, https://asterweb.jpl.nasa.gov/gdem.asp,
accessed on 8 February 2022), while the aspect and slope were extracted from the eleva-
tion map using ArcGIS 10.8. The bioclimatic variables were obtained from the Wordclim
Dataset [65] (http://www.worldclim.org, accessed on 8 February 2022). Twelve soil vari-
ables with 250 m spatial resolution and a depth of 0–5 cm except for soil organic carbon
content, whose depth was set by default at 0–30 cm, were also selected and downloaded
from the Soil Grids website (https://soilgrids.org, accessed on 15 January 2023) (Table 1).
These layers were converted into ASCII raster format and given the same geographic
projection, extent, and cell size for utilization in the MaxEnt model [19]. We included all
34 variables in our models at the same time following Feng et al.’s [66] observation that
high collinearity poses a lesser issue for machine learning techniques compared to statistical
models [67,68]. Furthermore, removing variables with high correlations does not improve
Maxent models since the algorithm can handle redundant variables and reduce the effects
of variable collinearity during model training [66]. Moreover, multicollinearity can lead
to response curves that are not reliable because the impact of one factor is mixed up with
its correlation to other factors, making it challenging to determine the actual effect of each
predictor [69,70].

Table 1. Environmental variables for the geographic distribution of grasslands in Mount Zireia.

Type Abbreviation Description Units

Bioclimatic

bio1 Mean Annual Temperature ◦C

bio2 Mean Diurnal Range (Mean of monthly
(max temp-min temp))

◦C

bio3 Isothermally (Bio2/Bio7) (×100) ◦C

bio4 Temperature Seasonality (standard
deviation ×100)

◦C

bio5 Max Temperature of Warmest Month ◦C

bio6 Min Temperature of Coldest Month ◦C

bio7 Temperature Annual Range (Bio5–Bio6) ◦C

bio8 Mean Temperature of Wettest Quarter ◦C

bio9 Mean Temperature of Driest Quarter ◦C

bio10 Mean Temperature of Warmest Quarter ◦C

bio11 Mean Temperature of Coldest Quarter ◦C

bio12 Annual Precipitation mm

bio13 Precipitation of Wettest Month mm

bio14 Precipitation of Driest Month mm

bio15 Precipitation Seasonality mm

bio16 Precipitation of Wettest Quarter mm

bio17 Precipitation of Driest Quarter mm

bio18 Precipitation of Warmest Quarter mm

bio19 Precipitation of Coldest Quarter mm

elevation_aster elevation m

Topographic
slope_aster slope %

aspect_aster aspect ◦

https://asterweb.jpl.nasa.gov/gdem.asp
http://www.worldclim.org
https://soilgrids.org
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Table 1. Cont.

Type Abbreviation Description Units

Soil

bulk density Bulk density of the fine earth fraction cg/cm3

cationexchcap Cation exchange capacity of the soil mmol(c)/kg

coarsefragm Volumetric fraction of coarse fragments
(>2 mm)

cm3/dm3

(vol‰)

claycontent Proportion of clay particles (<0.002 mm)
in the fine earth fraction g/kg

nitrogen Total nitrogen (N) cg/kg

phwater Soil pH pH × 10

sand Proportion of sand particles (>0.05 mm)
in the fine earth fraction g/kg

silt Proportion of silt particles (≥0.002 mm
and ≤0.05 mm) in the fine earth fraction g/kg

soilorgcarb Soil organic carbon content in the fine
earth fraction dg/kg

orgcarbden Organic carbon density hg/m3

worldrbssoilg
World reference base (2008) soil groups
(an international soil classification
system for naming soils)

soilorcarbst Organic carbon stocks

2.4. Environmental Variables for Forecasting Model

From the Climate Model Intercomparison Project Phase 6 (CMIP6), we selected the
models CNRM-CM6 [71] and CCMCC-ESM2 [72,73] to forecast the future grassland distri-
bution on Mt Zireia. We selected four future periods (2021–2040, 2041–2060, 2061–2080, and
2081–2100) in addition to historical data (1970–2000) (http://www.worldclim.org, accessed
on 8 February 2022). The CMIP6 includes various scenarios known as SSPs, representing
emission scenarios based on varying socioeconomic assumptions. The SSPs are identi-
fied from SSP126 to SSP585 (https://climate-scenarios.canada.ca/?page=cmip6-overview-
notes, accessed on 8 February 2022). In this study, the SSP245 and the SSP585 were selected
as the intermediate scenario and as the pessimistic GHG emissions scenario, respectively,
to predict the average suitable distribution areas of grasslands on Mt Zireia from 2021 to
2100 [74,75].

2.5. MaxEntropy Modeling

We used MaxEnt software (version 3.4.3) to simulate the potential current and future
distribution of grasslands and identify the environmental factors that impact their distri-
bution [23,76]. MaxEnt employs the maximum entropy algorithm and land occurrence to
predict the probability of land use [77]. For model calibration and assessment, 75% of the
data was utilized for training, while the remaining 25% was used to test the model’s pre-
dictive capabilities for grassland distribution [78]. The automatic settings were configured
for linear, quadratic, product, threshold, and hinge. The model was set up according to
Tavanpour et al. [79], Saha et al. [36], and Ramasamy et al. [80] using 10,000 random back-
ground points as pseudo-absence throughout the study area and by regularizing multiplier
1 and 500 iterations with a 0.050 convergence threshold. The output of the Cloglog was
utilized in the MaxEnt model to create a continuous map showing the predicted probability
of presence ranging from 0 to 1. The test was conducted by excluding each variable sys-
tematically to evaluate the significance of environmental variables [78,81]. The Jackknife
tests in Maxent were used to measure the dominant environmental variables contributing
to grassland distribution. The software algorithm runs a maximum iteration of 500 of these

http://www.worldclim.org
https://climate-scenarios.canada.ca/?page=cmip6-overview-notes
https://climate-scenarios.canada.ca/?page=cmip6-overview-notes
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processes and 0.00001 of convergence threshold. The Receiver Operating Characteristic
(ROC) shows the corresponding values for Specificity (Fractional Predicted Area on the
horizontal axis) and sensitivity (Omission Rate on the vertical axis), with one point for each
unique threshold [82]. The MaxEnt model’s prediction accuracy is determined by the Area
Under the Curve (AUC) from the ROC [23,65,83,84]. The AUC values range from 0 to 1.
Fielding [85] states that the model’s predictive power increases with a greater numerical
value. An AUC value of less than 0.5 indicates performance poorer than chance, whereas
an AUC value of more than 0.75 indicates high performance, and 0.5 suggests a forecast
similar to random chance [86]. The Maxent outputs were in ASCII format, and ArcMap 10.8
was used to analyze and visualize the final forecasting maps [65]. The grassland forecasting
map was classified into three classes following Coban et al. [84] based on potential suitable
distribution: marginal 0.25–0.5, moderate 0.5–0.75, and high >0.75. The area of the three
vegetation classes was then computed.

3. Results
3.1. Evaluations of the Model and Its Importance of Variables Under Current Climatic Conditions

The AUC values for the training and test data showed that our modeling approach’s
prediction accuracy for 1970–2000 was 0.864 and 0.786, respectively (Figure 2). The Jack-
knife test indicated that from all the independent examined environmental variables, the
distribution of grasslands was mostly influenced by bio8, bio6, bio12, bio19, and elevation
(Figure 3).
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3.2. Model Evaluations and Jackknife Test of Variables for Future Periods Under Different Climate
Models and Scenarios

All AUC values for all future periods were >0.858 (Table 2). The climate model
CCMCC-ESM2 and the pessimistic scenario (SSP585) for the period 2061–2080 demon-
strated the highest AUC value (0.883), while the SSP585 from CNRM-CM6-1 appears with
the lowest AUC value (0.859) for the period 2081–2100.

Table 2. The values of Area Under the Curve (AUC) for the future periods (2021–2040, 2041–2060,
2061–2080, 2081–2100) and the two CMIP6 climate models (CNRM-CM6-1 and CCMCC-ESM2) under
the scenarios SSP245 and SSP585.

Future Period

CMIP6 Climatic Models

CNRM-CM6-1 CCMCC-ESM2

SSP245 SSP585 SSP245 SSP585

2021–2040 0.874 0.870 0.883 0.871

2041–2060 0.870 0.874 0.860 0.868
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Table 2. Cont.

Future Period

CMIP6 Climatic Models

CNRM-CM6-1 CCMCC-ESM2

SSP245 SSP585 SSP245 SSP585

2061–2080 0.874 0.873 0.868 0.883

2081–2100 0.866 0.859 0.869 0.866
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The Jackknife test demonstrated that under the CNRM-CM6-1 model and intermediate
SSP245 scenario for all future periods, the environmental variables that contributed the
most to the model performance were bio12, bio6, and elevation (Figure 4). Moreover, the
distribution of grasslands could be predicted for the periods 2021–2040 and 2041–2060
based on bio14, bio17, bio18, and bio19 (Figure S1a,b). The bio8 was only significant
for the period 2041–2060 (Figure S1b). The Jackknife test also indicated that bio8 and
bio16 were significant variables for predicting the distribution of grasslands for the years
2061–2080 (Figure S1c), while for 2081–2100, bio19 and bio14 were the most significant ones
(Figure S1d).
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Under the CCMCC-ESM-2 climate model and the intermediate SSP245 scenario for
all future periods, the Jackknife test highlighted bio12, bio6, bio8 bio14, and elevation as
the environmental variables that contributed the most to model performance (Figure S2).
However, for the periods 2021–2040 and 2041–2060, the distribution of grasslands could be
predicted with greater accuracy based on bio17, bio18, and bio19 (Figure S2a,b). For the
periods 2061–2080 and 2081–2100, the most significant variables influencing the distribution
of grasslands were bio14, bio12, bio 6, and elevation (Figure S2c) as well as bio1, bio9, bio10,
bio11, and bio16 were also one of the significant variables for predicting the distribution of
grasslands (Figure S2d), respectively.

For all future periods under the climate model CNRM-CM6-1 and the pessimistic
scenario, the Jackknife test demonstrated that the environmental variables that contributed
the most to the model performance were bio14, bio6, and bio8 (Figure S3). More specifically,
for the periods 2021–2040, 2041–2060, and 2061–2080, the Jackknife test showed that bio11,
bio12, bio17, bio18, and bio19 were also crucial for predicting the grasslands’ distribution
(Figure S3a–c). The bio11 was only important for the period 2021–2040 (Figure S3a).
Elevation was important in all future examined periods except for 2041–2060 (Figure S3b).

Under the climate model CCMCC-ESM2 and pessimistic (SSP585) scenario, the Jack-
knife test revealed that bio12 and bio19 were the dominant environmental variables in
predicting the future distribution of grasslands (Figure S4). However, for the periods
2021–2040, 2041–2060, and 2061–2080, bio17 and bio18 were also very crucial predictors
(Figure S4a–c) while bio16 was only significant in 2021–2040 (Figure S4a). The variables bio8,
bio6, and bio14 were important for 2021–2040 and 2061–2080 (Figure S4a,c), whereas bio6
was also one of the most major relatively important variables for 2081–2100 (Figure S4d).
Elevation was also an important variable for predicting the grasslands’ distribution in all
future periods except 2081–2100 (Figure S4d).
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3.3. Current and Future Predictions of the Potential Distribution of Grasslands Using Ecological
Niche Modeling

The current predictions (1970–2000) for grassland performance on Mt Zireia revealed
that 7.9% of the study area showed high performance, 10.9% had moderate performance,
and 19.3% displayed poor performance. Additionally, 61.9% of the entire study area was
unsuitable for grasslands (Figures 4 and 5).
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up to 2100.

According to the predictions for the future of the CNRM-CM6-1 climatic model,
there was an expansion of the high suitability area for grasslands in all periods except for
2021–2040 in the SSP245 scenario, which showed a slight decrease (Figures 4–6). Further-
more, the moderately appropriate area increased in all periods in the SSP585 scenario, as
opposed to the SSP245 scenario, which increased only during 2041–2060 (Figures 4–6). The
area with high suitability displayed variations across time for all upcoming years and both
scenarios, with no clear pattern within the CCMCC-ESM2 climate model. The moderate
suitable area increased in most periods and scenarios, except for 2021–2040 in the SSP245
scenario and 2061–2080 in the SSP585 scenario (Figures 4–6).
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Figure 7 illustrates the projected distribution of grasslands in four elevation zones
based on the CNRM-CM6-1 model’s predictions under SSP245 and SSP585 scenarios. The
findings showed that elevations above 1200 will experience an increase in grassland area.
The increase will be higher in the pessimistic scenario (SSP585).
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4. Discussion

The results of the present study demonstrated that (a) the MaxEnt model was highly
accurate under the two examined climate models, (b) climate change strongly impacts the
distribution of grasslands on Mt Zireia, (c) forecasting is differentially affected by specific
periods, scenarios tested, and climatic models, and (d) the model CNRNM-CM6-1 predicts a
substantial increase in grassland up to 2100, especially in elevations higher than 1200 m asl.

The accuracy of MaxEnt was high in forecasting suitable areas for grassland prevalence
(AUC values from 0.858 to 0.883). It is widely accepted that AUC values higher than
0.8 demonstrate high performance of the model [68,87–90].

There is no agreement regarding the relative significance of the selection period,
scenario, and climatic model as far as the prediction of the MaxEnt model is regarded [91,92].
The predictions of different models under the same scenario for the potentially suitable
areas were different. The SSP245 scenario within the CNRM-CM6-1 model showed that
the potential highly suitable areas for grassland areas will increase up to 2100 except for
the period 2021–2040, while the CCMCC-ESM2 model did not show a clear future trend.
On the other hand, in the SSP585 scenario, both models predicted similar changes in the
moderately suitable grassland area, showing an increase in all future periods except for
2061–2080 in the CCMCC-ESM2 model. Our results are in agreement with Zhou et al. [65]
who found different distribution trends in Cunninghamia lanceolata under different models
and scenarios. Many studies mentioned that examining the forecasts from various models
under the same scenario reveals diverse prediction outcomes [65,93]. The different SSP
scenarios, based on different socio-economic patterns and carbon emissions, affected the
trend in land use and cover change and were probably influenced not only by radiative
forcing but also by unique local development pathways within various societies [93].

In our study, out of the examined environmental variables in the two climate models,
annual precipitation (bio12), minimum temperature of the coldest month (bio6), and ele-
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vation had the most important effects on the distribution of grasslands. Our results agree
with the findings of Zhou et al. [65], Zhang et al. [94], and Yan et al. [76], demonstrating
that temperature, precipitation, and temperature changes were the most critical environ-
mental factors. Temperature and precipitation are significant factors for plant growth and
phenology, such as the beginning and end of the growing season, timing of flowering, and
physiology [95]. Changes in species phenology, as a result of climate change, have been
observed to be primarily associated with temperature [95,96], while in arid and semi-arid
environments, the seasonal patterns of precipitation can also have a significant impact [97].
According to Bede-Fazekas et al. [91], global climate change is causing a rearrangement
of bioclimatic variables worldwide, such as precipitation and temperature timing. Re-
searchers in recent decades have observed a rise in global net primary production because
of the prolonged growing season caused by higher temperatures, particularly in mid and
northern latitude areas [98]. However, in environments under water stress (arid and semi-
arid), the factors influencing the timing and intensity of greenness in response to climate
remain uncertain. Variables related to soil did not reveal an important role in grasslands’
distribution and probably in the species that participate in their floristic composition [90].
Slope and aspect had a minimal impact on grassland distribution, as other researchers
agreed that local topography can only influence microhabitat conditions in comparison to
climate and disturbance regimes, which are generally the major determinants of grassland
distribution [99], especially in arid and semi-arid environments [100]. On the other hand,
the elevation was a significant predictor of grassland performance as is mentioned in other
studies [101,102].

The influence of climate change is different in each elevation zone. These mountainous
areas are identified as a “hotspot” for climate change, leading to significant impacts on
mountain ecosystems, and human communities [103]. In Greece, a higher percentage of
grassland occurs in the mountainous zone. However, mountainous grasslands are extensive
ecosystems found across the globe, offering a range of economic and cultural benefits [46].
Our results reveal climate- and elevation-related effects, and we predicted a higher increase
in mountainous grassland areas under the pessimistic scenario. This could be attributed to
the change in temperature and precipitation. Considering the climate model CNRM-CM6-1,
under the intermediate scenario, we predict an increase in the minimum temperature of
the coldest month (bio6) by 1 ◦C and 2 ◦C for the specific periods 2020–2040 and 2081–2100,
respectively. A decrease in annual precipitation (bio12) by 20 and 90 mm for the above
periods, respectively, is also predicted. Under the pessimistic scenario, the changes in the
above bioclimatic parameters were higher. The minimum temperature of the coldest month
(bio6) increased by 1.5 ◦C and 4 ◦C, and the annual precipitation (bio12) decreased by about
20 and 170 mm for the specific periods 2020–2040 and 2081–2100, respectively (unpublished
data). Especially for the mountainous zone, a 100 mm and 190 mm decrease in precipitation
is predicted for the periods 2020–2040 and 2081–2100, respectively. Currier and Sala [97]
revealed that precipitation impacted the beginning and end of the growing season, while
temperature only impacted the start of plant growth. Changes in plant growth patterns can
influence the supply of food for livestock, which has an impact on the economy of pastoral
communities and especially transhumance [104,105]. The diachronically higher potential
distribution of grasslands in the high elevation areas (central part of the study area) can be
attributed to an observed trend in recent years called “the mountain effect” [106]. According
to this trend, grasslands located at higher elevations exhibit greater resistance to change,
primarily due to the traditional practice of vertical transhumance in the region [107] and
the challenging soil and climatic conditions in the area [108]. These areas may provide
suitable habitats for species migrating to higher altitudes in response to the impacts of
climate change [109,110].

Climate change can have intricate effects on grasslands by changing plant competition,
growth patterns, productivity, and plant–animal interactions, leading to a decline in forage
quality [16]. Grazing is a well-established method of maintaining grasslands, especially
in mountainous areas. In most grasslands, precipitation and grazing are key factors
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influencing species diversity and ecosystem function [18,57,95,111]. Grazing animals,
human activities, soil quality, nutrient depletion, fire, habitat fragmentation, and climate
change have a significant impact on grasslands [41,44]. In most grasslands, changes in
temperature along with precipitation [112] and grazing [113,114] are the main variables
influencing species diversity and ecosystem function [115,116]. The grasslands on Mt
Zireia are vital for sedentary and transhumant livestock as they provide necessary forage
production from May to October [107]. Nevertheless, in this study, the impact of grazing
was not examined. Many studies have demonstrated that grasslands can generate a range
of ecosystem services sustainably, even during extreme weather events, if management
adapts to changing conditions quickly and effectively [103].

Overall, our study underscores the importance of examining the combined impacts
of climate change and grazing intensity on land use and cover changes, particularly in
mountainous grassland ecosystems. This research lays the foundation for more in-depth
analysis of how climate change affects highland ecosystems. It is crucial for farmers and
other stakeholders to understand and adapt to the shifting environmental conditions,
ensuring the resilience of these ecosystems. In particular, pastoral agents can play a pivotal
role since they are very vulnerable to climate change dynamics, and this calls for systematic
mitigation and adaptation actions to ensure their livelihoods. By integrating data and
analytical tools, we can improve livestock management strategies and support informed
decision-making. This approach not only aids in the sustainable management of land use
but also contributes to conservation efforts, providing essential guidance for preserving
these vital ecosystems in the face of ongoing climatic challenges.
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